Reuse

An Economic Analysis of Software Reuse®

Dr. Randall W. Jensen
Software Technology Support Center

This article presents a simplified economic analysis of the cost of software reuse. The reuse definition used here includes both
commercial off-the-shelf (COTS) and existing software from an upgraded platform. The results are independent of software
estimating tools or models. The model nsed in this analysis relates the cost of software development to the reused software level

and the costs of developing and maintaining the software components. COTS software is a special case of reuse described in

this article.

urrent software projects tend to

maximize reusable component use
and minimize development product size.

There are significant advantages to using

reusable components:

* Lower development time and effort
through using existing, supported
components.

* Reduced risk through using proven
field-tested components.

High customer demand, reduced soft-
ware development budgets, and a compet-
itive software market drive the need for
reusable software. The downside to
reusable software is a high development
cost, and the significant cost of integrat-
ing reusable components into software
products. These integration costs can be
devastating if components are inadequate,
pootly defined and documented, or not
quite compatible with the application.

Gaffney and Durek [1] published the
first economic analysis report of this
type in 1988. Marion Moon and 1 (while
at Hughes Aircraft Company) in 1989 ini-
tiated an economic analysis in response
to [1]. Unfortunately, the project was
shelved before completion due to higher
priority tasks. The interest in reuse cost
and the need for the economic analysis
has continued to increase since that time.
Meanwhile, the acronym COTS (com-
mercial off-the-shelf) has largely replaced

the term reuse, but the costs associated

© 2002 Software Engineering,

Figure 1: Black Box Versus White Box

B
White Box

Se>> 0

Black Box
Se= 0

4 CRrossTALK The Journal of Defense Software Engincering

with reuse have remained the same.

The analysis in this article focuses on
the primary measurable costs associated
with reuse, but does not consider several
hard-to-predict costs:

* Vendor upgrade release to reusable

component.

* Vendor discontinuing component
support.

* Component requirement or capability
changes.

“High customer
demand, reduced
software development
budgets, and a
competitive software
market drive the need
for reusable software.”’

* Cost of component evaluation and
selection.

* Understanding component function
or external interfaces.

The objective of this analysis is to
show there are significant cost impacts of
software reuse without considering the
costs associated with the less-defined fac-
tors listed above. The analysis results
show significant and somewhat opti-
mistic cost impacts.

Black-Box Phenomenon

The concept of a black box is widely
used in system and hardware design. A
black box is a system (or component,
object, etc.) with known inputs, known
outputs, a known input-output relation-
ship, and unknown or irrelevant contents.
The box is black; that is, the contents are
not visible as shown in Figure 1. The

black-box concept is particularly impor-

tant where components, or objects, are

used without the engineering, implemen-
tation, integration, and test costs associ-
ated with their development.

A white box is a component that
requires knowledge of the box contents
to be used. A software component
becomes a white box when either of the
following conditions exist:

* A modification is required to meet
software requirements.

* Documentation that is more exten-
sive than an interface or functional
description is required before the
component can be incorporated into
the software system.

Black-box component behavior is
characterized in terms of an input set, an
output set, and a relationship (hopefully
simple) between the two sets. Behavior
must be uniquely determined for all input
and output combinations. Behavior must
be stable and reliable. Once behavior
becomes unstable, unreliable, or slightly
different than the project needs, the com-
ponent becomes a white box. Effective
size S. is a major difference between
black box and white (or gray) box com-
ponents from an estimating point of
view. The effective size of the software
within the black box is zero. Prying the
lid off the box has serious consequences
in terms of effective size.

Reusable software in this analysis satis-
ties the black box component definition.

First-Order Reuse Cost Model
There are some conditions we need to
assume in this economic analysis:

* The software must satisfy the black-
box requirements at the level of
abstraction being applied; that is, the
reused software satisfies the required
performance requirements without
modification.

* User knowledge is expert within the
scope of reuse.

* Documentation is adequate for the

December 2004

reuse needs.

* Cost of reusable component selec-
tion, evaluation, and purchase are
ignored.

* The product is rock solid, that is, no
maintenance is required, and no ven-
dor upgrades will be made.

A software system contains three cat-
egories of source code: new S»; original
8., including both modified and /Zffed (lift-
ed is a term for unchanged original code);
and reused S as shown in Figure 2. The
effective size S. used in most software
cost and schedule estimates is an adjusted
combination of the new and modified
source code similar to the equation:

Se=Sn+ So(Adx Fa+ Ai x Fi+ At x Ft) (1)
where,

As = Design activity, A= Integration
activity, A= Test activity and A+ A+
A:r= 1. The parenthetical factor is a
weighted combination of relative efforts
from the design (I)), implementation (I),
and test (I) activities. More thorough
discussions of effective size can be found
in the references.

The remainder of the system consists
of one or more reusable components.
Since reusable components ate black
boxes that have no accessible size, we
cannot directly apply an effective size
equation to form an estimate.

For our purposes, we are going to
assume the relative reusable compo-
nent(s) size can be derived by estimating
the size of the reusable component built
from scratch S as:

R=_Sr__

(se+r 3])

where,

R is the portion (fraction) of the system
to be implemented by reusable source
code.

The first-level economic model of
software reuse begins with the assump-
tion that the cost of software develop-
ment C for a product relative to the cost
of all new source code can be given by
the equation:

C=1(1-R)+bR

or

C=1+R(b-1) 3)

where,

December 2004

An Economic Analysis of Software Reuse

Equation Legend

a Reusable component development cost relative to the cost of
non-reusable development from scratch.

b Relative cost of incorporating reusable components into
developed system.

C Relative cost of software development.

£ Relative COTS acquisition cost relative to the cost of
non-reusable development from scratch.

n Number of uses over which the reusable product cost is
amortized.

R Portion (fraction) of the system to be implemented by reusable
source code.

Fa Design effort relative to design from scratch.

Fi Implementation effort relative to implement from scratch.

F Test effort relative to test from scratch.

Scors | Estimated size of an internally developed COTS replacement.

Se Effective source size for devlopment.

Sn New source code to be added to system.

So Original source size from pre-existing system.

C=1 is the cost of developing a system
from scratch. The factor & represents the
cost of incorporating reused compo-
nents into the system relative to develop-
ing the components from scratch. The
term (7-K) represents the fraction of new
and/or modified source code. This
model was first published by Gaffney and
Durek [2] and is the basis of this analysis.

Reuse can occur at several levels:
requirements, design, code, and validated
code. Using the relative design, implemen-
tation, and integration factors from Sage
[3], we find the relative cost for each
development activity given by Table 1 (see
page 0). The relative cost values based on
Constructive Cost Model (COCOMO)
[4]/Revised Intermediate COCOMO
(REVIC) [5] are also included in the table
for comparison.

The reusable component type
(abstraction) determines the relative cost
factor b in Equation (3). The specific
reusable component types considered in
this analysis are requirements, design,
code, and validated code. The activities to
develop these are defined as follows:

* Requirements. Includes the analysis
and synthesis of software require-
ments. The product resulting from

this activity is the Software
Requirements Specification (SRS).
The activity is often terminated with a
software requirements review (SRR).
The definition of system require-
ments, if present, is not part of the
software requirements analysis activity.

* Design. Includes the architecture and

detailed design of the software prod-
uct. The resulting product of this
activity is a detailed product specifica-
tion containing both the architecture
and component specifications. The
activity is usually terminated by a

Figure 2: Software System Architecture for
Reuse Analysis

ORIGINAL So
Modified | Lifted

NEW Reuse

Sn Sr

www.stsc.hillaf.mil 5

Reuse

Activity Activity

Code

Relative Cost,
REVIC/COCOMO

Relative Cost,
Sage

Requirements

0.07 0.07

Design

0.38 0.41

Implementation

0.23 0.26

Integration and Test

Table 1: Relative Costs of Development Activities

0.32 0.26

detailed design review (often referred
to as a critical design review, or CDR).

* Implementation. Implements the
detailed software design in the speci-
fied programming language(s), and
verifies the individual component
(unit) performance to the require-
ments specified in the detailed prod-
uct specification.

* Integration and Test. Integrates
(combines) the tested software com-
ponents into a larger structure that
represents the software product. The
activity may contain one or more
computer programs. The components
are individually defined by formal
requirements and interface specifica-
tions. The activity usually culminates
with a qualification test that evaluates
performance per the software
requirements specification for the
product. The test is usually conducted

at the development facility with con-

trolled test data.

* Regression Test. Integrates previ-
ously validated components into a
larger software product structure.
This activity may contain one ot more
computer programs. The regression
test activity ends with satisfactory
completion of the final qualification
test that evaluates product perfor-
mance per the software requirements
and interface specification.
Regression test usually reduces the
early integration tests required by the
integration and test activity.

Table 2 combines the relative activity
costs from Table 1 to provide the relative
component reuse cost b values. For
example, the design, implementation, and
test activities must be completed to
incorporate a requirements reuse compo-
nent. The incorporation cost is the sum

Table 2: Relative Reuse Cost

Component Type | Activities to Be Completed

Relative
Development Cost

Relative Reuse
Cost (b)

Requirements Design, Implementation,

Test

0.93 0.07

Design

Test

Requirements, Implementation

0.62 0.45

Code Requirements, Test

0.39 0.68

Validated Code

Requirements, Test (Regression)

0.27 1.00

Figure 3: Relative Development Cost vs. Reuse Fraction By Reuse Component Type

1.2
S
- 1
2] §\ .
8 \E\ Requirements
€ 08 S —
E I
iOl 06 \\ \ \Design
[0 \\
o 04 ~—_ Code
2 ™
£ 02 Valid code
[0}
« 0

0O 01 02 03 04 05 06 07 08 09 1

Reuse Fraction (R)

6 CRrosSTALK The Journal of Defense Software Engincering

of the relative activity costs, or b = 0.93.
If the code is reused, the requirements
effort for this component of the new
system must still be performed. Also
note the relative integration cost & for
validated code is assumed to be 0.27
instead of the 0.32 value assumed by
Sage for normal integration and test.
This decrease accounts for the reduced
testing requirements of validated code.

The cost relationship between relative
development cost C and the percent of
reusable software R is illustrated graphi-
cally in Figure 3. The graph shows the
relative costs for each reuse component
type (b values defined in Table 2). Reuse
percentages greater than 50 percent are
uncommon and are highlighted with a
gray background in the figure. The sim-
ple cost model shows that the maximum
cost reduction for a software system con-
taining 50 percent COTS software (vali-
dated code $=0.27) is only about 37 per-
cent (relative development cost is 63 pet-
cent). If 100 percent validated code reuse
were possible, the software still costs 27
percent of the cost required to build the
software system from scratch due largely
to regression testing;

Higher Order Cost Model

The first issue that must be considered in

developing the reuse cost model is the

cost of the reusable component.

Incorporating the development cost into

the economic model yields:
C=(1-R)x1+(b+%)R 4)

where,

a is the reusable component development
cost relative to the cost of non-reusable
development from scratch, and # is the
number of uses over which the reusable
product cost is amortized. The model
then becomes:

C=(b+% -1)R +1 (5)
The relative component development
cost is at least equal to the non-reusable
software development cost. The develop-
ment cost could double when the effort
required to make the component more
robust is considered. For this analysis we
assume the relative component develop-
ment cost « is in the realistic range
1.0<a<2.0. The factor a/n in the cost
model accounts for the amortized cost of
providing the reusable software to this
project. Equation (5) shows that as long
as the coefficient is b+a/n<1, reuse will
provide a positive cost incentive; that is,
C<1. We will look at the cost incentive

December 2004

further in the next section.

The factor « can also be used to relate
the relative cost of purchasing, or other-
wise acquiring, the reusable compo-
nent(s) for the project. In this case, the
component acquisition cost « is in the
range 0.0<a<2 where the reusable com-
ponent acquisition relative cost includes
evaluation, selection, and procurement.
As acquisition cost approaches develop-
ment cost, acquisition becomes less
attractive.

The reusable component acquisition
cost can be treated in a more conserva-
tive manner. Assume the development
project is only willing to absorb the
amortized cost of the component used in
the project. That is, if the project is using
only the requirements from the acquired
component, we can argue that require-
ments cost is the only cost to be amot-
tized. In that case, the model becomes:

a(1- b)
2.

C=(b+)R +1 (6)

where,

a(1-b) represents the requirements acqui-
sition cost. We cannot ignore the cost of
maintaining the library of reused compo-
nents. Let the cost of library mainte-
nance be allocated as a fraction of the
component development cost. Incor-
porating maintenance into Equation (5)
we find:

c=m+§ﬁﬁiﬂ-ﬂR=1 (7)
where,

d is the cost fraction added to the com-
ponent acquisition cost to account for
reuse library maintenance. The mainte-
nance fraction value is a function of the
size and use of the maintenance library.
The maintenance value is also amortized
over the number of component uses.

Acquisition Amortization

The reusable component amortization is
a function of the number of applications
of each component. A large number of
reuses 7 reduces the magnitude of the
amortization factor «/# in each of
Equations (5) - (7). The reuse cost coeffi-

cient
b+d -1 (8)

must be negative in order to provide a cost
improvement in Equation (5). Or, in other
words, if the coefficient is b+a/n<1, the
relative software development cost C for
the project is less than 1.0.

December 2004

An Economic Analysis of Software Reuse

Relative Cost of Developing Reuse Component (a)

Relative Reuse Cost (b) 1.00

1.25 1.50 1.75 2.00

Requirements (0.93) 15

18 22 25 29

Design (0.62)

Code (0.39)

Validated Code (0.27)

Table 3: Minimum Reuse Number (n,) Versus Component Type (b) and Acquisition Cost (a)

The minimum number of reuse appli-
cations can be derived from Equation (8)
by setting the coefficient to unity and
solving for . The resulting equation
shown in Equation (9) represents the
number of uses required to cover the
reusable component cost. The threshold
reuse number (1) is:

n. = ceiling (rab) 9)

rounded up to the nearest unit.
Ceiling(arg) is defined as the smallest inte-
ger greater than, or equal to, arg. The
information in Table 3 demonstrates the
threshold, or minimum number of reuse
applications.

““The models developed
in this effort and the
results achieved here are
independent of software
estimating tools or
models. This information
can be tailored or
related to any software
cost estimation model.”’

1

The threshold reuse number values
shown in Table 3 represent the break-
even values for reusable component
development. The number of reuse
applications must be greater than, or
equal to, the numbers shown to have a
positive impact on the projects using the
components.

COTS Cost Model

COTS software is a special application of
software reuse. There are several assump-
tions we must make before specifying the
COTS software cost model. The best way
to visualize COTS software is as a shrink-
wrapped product. This basically means
that the software includes the following:

* Contains only validated source code.

* Is purchased and not internally devel-
oped or modified.

* Has no library costs associated with
the product.

* Conforms to the black-box definition.

* Requires no product maintenance.

* Requires no version upgrades.

The reuse fraction R is approximated
by estimating the source code size for an
internally developed product that is func-
tionally equivalent to the COTS software.
The ratio R is defined as:

SCOTS

R= _9¢o1
Se + Scors

(10)
where,

Scors is the estimated size of an internally
developed COTS replacement, and S. is
the effective size of the new, modified,
and lifted source code S, as shown in
Figure 2.

Externally developed components
(COTS) are simpler to analyze because
the development costs are outside the
project development environment.
Amortization and maintenance costs are
still relevant to the economic analysis.
The economic cost model for COTS
software (validated code) becomes:

F(1 + d)_ (11)
n

C=(0.73)R +1

where,

Fis the COTS acquisition cost relative to
the cost of non-reusable development
from scratch. The lower cost limit for free
COTS components is approximately 27
percent due to regression testing and soft-
ware validation. No consideration has
been given in Equation (11) to the costs
associated with component evaluation
and selection, nor has any consideration
been allowed for developing expertise in
the components’ external interface or
function.

We can graphically illustrate the rela-
tive software costs associated with using
COTS software. Let us consider the fol-
lowing example:

www.stsc.hillaf.mil 7

Reuse

1.60

1.40 F=1.0
—_~ /
% 1.20 —
3 L F=0.75
€ 1.00 '§\\
z BN ———— F=05
% 0.80 Sy —
C|>.) \ \\
a 0.60 F=0.3
S 0.40 F=0.1
[0}
o

0.20

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Reuse Fraction (R)

Figure 4: Relative Development Cost Versus Reuse Fraction By Relative COTS Purchase Cost

e Fis in the practical range 0.7<F<7,;
that is, F is limited to the cost of
developing the COTS component(s)
from scratch.

* Component cost is to be amortized
over one (1) application, or #=1.

* Maintenance over the useful life of the
component(s) is 10 percent, or 4=0.1.
The relative product software cost C

relative to the cost of all new source code

calculated from Equation (11) for this
example is plotted in Figure 4. The maxi-
mum relative acquisition cost F in this
model under these conditions to break even
is approximately 65 percent of the cost to
develop the COTS product from scratch.
If we assume the reusable component
is free (F=0) and a practical maximum
reuse fraction (R=0.5), the economic
model in Equation (11) shows the relative

development cost is approximately 64

percent. The ideal relative development

cost with a reuse fraction for R=0.5 is 50

percent of the cost of developing the

product without reusable components.

The economic model prediction is realis-

tically higher than the ideal condition.

Summary and Conclusions

The intent of this effort produced a sim-
plified economic model that provides a
realistic prediction of software product
development costs in an environment
containing reused software components.
The reuse definition used in this analysis
includes both COTS software and inter-
nal software components developed for
reuse. The models are developed at two
levels. The first level, a truly first-order

8 CRrRosSTALK The Journal of Defense Software Engincering

model, relates relative software product
development costs to the fraction of the
product to be implemented by reusable
components and the reusable component
sophistication (requirements, design,
etc.). The second level incorporates the
significant costs associated with the
development, or acquisition of reusable
components.

The models developed in this effort
and the results achieved here are indepen-
dent of software estimating tools or mod-
els. This information can be tailored or
related to any software cost estimation
model.

The economic model does not
attempt to account for all costs associat-
ed with software reuse. The reusable
component function and interface com-
plexity issues are ignored here, but are
vital estimate elements in practice. There
are several cost factors not included
because of the difficulty in establishing
numeric values for these factors in a
broad general sense. These factors, listed
in the introduction, should not be
ignored in the real application of these
models. The factors are major considera-
tions in most projects. ¢

References

1. Gaffney Jr., John E., and Thomas A.
Durek. “Software Reuse — Key to
Enhanced Productivity; Some Quanti-
tative Models.” Vers. 1.0. SPC-TR-88-
015. Herndon, VA: Software Produc-
tivity Consortium, Apr. 1988.

2. Galffney Jr., 2-1.

3. Software Engineering, Inc. Sage User’s

Guide. Brigham City, UT: Software
Engineering, Inc., May 2001.

4. Boehm, B.W. Software Engineering

Economics. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

5. REVIC Users Group. REVIC Software

Cost Estimating Model User’s Manual.
Vers. 9.0. Arlington, VA: Air Force

Cost Center, 1991.

About the Author

Randall W. Jensen,
Ph.D., is a consultant for
the Software Technology
Support Center, Hill Air
Force Base, Utah, with
more than 40 years of
practical experience as a computer pro-
fessional in hardware and software
development. For the past 30 years, he
has actively engaged in software engi-
neering methods, tools, quality software
management methods, software sched-
ule and cost estimation, and manage-
ment metrics. He retired as chief scien-
tist of the Software Engineering
Division of Hughes Aircraft Company’s
Ground Systems Group, and was
responsible for research in software
engineering methods and management.
Jensen founded Software Engineering,
Inc., a software management-consulting
firm in 1980. He developed the model
that underlies the Sage and the Galorath
Associates, Inc’s Software Evaluation
and Estimation of Resources — Software
Estimating Model [SEER-SEM] soft-
ware cost and schedule estimating sys-
tems. Jensen received the International
Society of Parametric Analysts Freiman
Award for Outstanding Contributions to
Paramet-ric Estimating in 1984. He has
published several computer-related texts,
including “Software Engineering,” and
numerous software and hardware analy-
sis papers. He has a Bachelor of Science
in electrical engineering, a Master of
Science in electrical engineering, and a
doctorate in electrical engineering from

Utah State University.

Software Technology

Support Center

6022 Fir AVE, BLDG 1238

Hill AFB, UT 84056-5820

Phone: (801) 775-5742

Fax: (801) 777-8069

E-mail: randall.jensen@hill.af.mil

December 2004

